
Hitachi Vehicle Operating System for SH-2

Communication Manual

2

PLEASE READ THE FOLLOWING CAREFULLY BEFORE YOU USE THIS
PRODUCT.

1. If you use the enclosed software product and any related software products (hereafter
referred to as “PRODUCT“), before exporting or taking such PRODUCT to other countries
or states, you must comply with applicable export control laws and regulations of Japan and
other countries with jurisdiction and the applicable states and provinces within Japan and
such other countries.

2. Please be advised that Hitachi neither warrants nor grants licenses of any rights to the
patents, copyrights, trademarks, or other intellectual property rights owned by Hitachi or any
third party for the use of the PRODUCT, unless otherwise expressly granted to you by
Hitachi in a contract or other document including without limitation any warranty or license
included in the user’s manual for the PRODUCT (hereinafter referred to as
“CONTRACTS”). Please be further advised that Hitachi bears no responsibility for
problems that may arise with third party’s rights, including intellectual property rights, in
connection with the use of the PRODUCT.

3. The PRODUCT, its specifications and/or its description in the user’s manual are subject to
change in the future without any prior notice. Confirm that you have received the latest
standards and/or specification for the PRODUCT (including the user’s manual) before you
make your final design, purchase or use.

4. Please be advised that Hitachi will not have any liability whatsoever for damages, including
indirect or consequential damages, arising out of your use of the PRODUCT (including the
use based on the descriptions of the user’s manual). Hitachi shall not be liable for any
damages caused by any equipment or media used for delivery of the PRODUCT.

5. The PRODUCT is not designed for, and you may not use the PRODUCT for, applications
that demand especially high quality and reliability, or where its failure or malfunction may
directly threaten human life or cause risk of bodily injury, such as equipment used for
aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety
equipment or medical equipment for life support. If you have any questions regarding
whether or not your intended use of the PRODUCT is permitted by Hitachi,, please contact
your local Hitachi’s sales office.

6. At the time of designing or planning your system using the PRODUCT, please consider
normally foreseeable failure rates or failure modes and employ sufficient systematic
measures such as fail-safe systems so that the equipment incorporating the PRODUCT does
not cause any accident or other consequential damage due to operation of the PRODUCT.

7. This manual and the PRODUCT are copyrighted by Hitachi. Under any circumstances, you
may not copy, analyze, reverse engineer, and/or modify, in whole or in part, the PRODUCT,
except to the extent expressly provided in the CONTRACTS.

8. You may not use or copy, in whole or in part, the user’s manual for the PRODUCT without
the prior written consent of Hitachi, except to the extent expressly provided in the
CONTRACTS.

Cautions

3

9. You may use the PRODUCT on just one (1) computer. You may not transfer, lease or
otherwise assign the PRODUCT to any third party or parties, except to the extent expressly
provided in the CONTRACTS.

10. Please contact your local Hitachi’s sales office for any questions regarding the PRODUCT,
any Hitachi semiconductor products or any related products.

4

Select the items you want to know from the following flowchart before reading this manual.

Overview Chapter 1 INTRODUCTION
Yes

No

Operating
environments Chapter 2 OPERATING ENVIRONMENTS

Yes

No

Function
Yes

No

System
configuration

Yes

No

Message function

No

Yes
Section 3.2 Messages

Network settings

No

Yes
Section 3.3 Networks

COM architecture

No

Yes
Section 3.4 COM
 Architecture

COM operation
Yes

Section 3.5 COM Control

Chapter 4 SYSTEM CONFIGURATION

Programming
Yes

No

System services
Yes

API

No

Yes
Chapter 6
 API DESCRIPTION

Chapter 5 PROGRAMMING

Section 7.1 Communication
 Service Return Codes
Section 7.2 Return Code IDs
Section 7.6 Stack Requirements

5

Table of Contents

1 INTRODUCTION ... 7

1.1 Document Overview ..7

1.2 Definitions and Acronyms...7

1.3 COM Overview ..7

1.4 Features of This Product ...9

2 OPERATING ENVIRONMENTS.. 11

2.1 Conformity Version ...11

2.2 Conformance Class ..11

2.3 Communication Bus...11

2.4 Operating System...12

2.5 Notes..12

3 FUNCTIONS.. 13

3.1 Function Overview...13

3.2 Messages ...13
3.2.1 Message Types ...13
3.2.2 Message Operations ...14
3.2.3 Notification to Application...15
3.2.4 Transmission Modes...16
3.2.5 Deadline Monitoring ..20
3.2.6 Message Attributes ...21

3.3 Networks...22
3.3.1 HCAN Related Parameters...22
3.3.2 Channel...22

3.4 COM Architecture...24

3.5 COM Control ...25
3.5.1 Start Up ..26
3.5.2 Normal Operation...26
3.5.3 Shut Down..26
3.5.4 Error Handling..27

4 SYSTEM CONFIGURATION... 29

4.1 COM Application Building ...29

4.2 COM Configuration Files..30
4.2.1 Evb ...31
4.2.2 Hcan ...31
4.2.3 Mcs...32
4.2.4 Msg...32

5 PROGRAMMING... 33

6

5.1 COM Initialisation...33

5.2 Include Files..33

5.3 Interrupts..34
5.3.1 HCAN Interrupts ..34
5.3.2 Interrupt Priority Levels ...34

5.4 User Code..35
5.4.1 Initialisation processing..35
5.4.2 Call-Back Functions ...35
5.4.3 HCAN ISR ...36

5.5 Interface to OS ...37
5.5.1 Interrupt..37
5.5.2 Alarm and Task ..37

5.6 Registers..37

5.7 Stack..37

5.8 Calling a Communication Service From an Assembler Routine ...38

5.9 Notes on Assembler Use...38

6 API DESCRIPTION ... 39

6.1 Standard Interface...39
6.1.1 StartCOM ...39
6.1.2 MessageInit ..40
6.1.3 SendMessage..41
6.1.4 ReceiveMessage ...42
6.1.5 GetMessageStatus ..42

6.2 Original Interface Functions...43
6.2.1 OC_SendMsgToNetPer..43
6.2.2 OC_MixedTxEval ..44

7 APPENDIX .. 45

7.1 Communication Service Return Codes ..45

7.2 Return Code IDs ..46

7.3 Communication Service Calls ...47

7.4 Data Types..47

7.5 Maximum Parameters ...47

7.6 Stack Requirements ...48

7

1 INTRODUCTION

1.1 Document Overview

This document defines the operation of the Hitachi Vehicle Operating System Communication
V2.1 (hereafter referred to as COM) which conforms to the OSEK/VDX (hereafter referred to as
OSEK) open standard for communication, Specification Version 2.0a. This document is
described on the assumption that OSEK specification is understood.
Read this document carefully and understand the contents of the following documents before
using this product.

- “OSEK/VDX Operating System”, Version 2.0 revision 1 (OSEK/VDX steering committee)
- “OSEK/VDX Communication”, Version 2.0a (OSEK/VDX steering committee)
- “OSEK/VDX Communication”, Version 2.1 revision 1 (OSEK/VDX steering committee)
- Release Notes of this product
- SuperH RISC engine C/C++ Compiler Package Manual
- Programming Manual and Hardware Manual of the target SH microprocessor

1.2 Definitions and Acronyms

API Application Program Interface

CAN Controller Area Network

CCC Communication Conformance Class

COM Communication for Hitachi Vehicle Operating System

DLL Data Link Layer

ECU Electronic Control Unit

HCAN Hitachi Controller Area Network

HW Hardware

NM Network Management

OS Operating System

OSEK Open systems and the corresponding interfaces for automotive electronics

SW Software

VDX Vehicle Distributed eXecutive

1.3 COM Overview

The OSEK COM is one of SW components specified by the OSEK Standard. The other
components are the operating system (OS) and the network management module (NM). All three
components provide functionality common to automotive applications.

8

Figure 1.1 shows a system concept for automotive applications. In a car, there are a number of
ECUs exchanging information over a CAN network. Each ECU is dedicated to the control of a
certain mechanical component or subsystem in the car. For instance, ECU #1 may be the Engine
Management Controller, ECU #2 the Gearbox Controller, etc. Higher level functionality in the
car may be distributed over several ECUs.

Figure 1.1 System Concept for Automotive Applications

ECU #1

HW

SW

ECU #2

HW

SW

ECU #N

HW

SW

Network

9

The internal structure of an ECU is shown in Figure 1.2.

Figure 1.2 Internal SW Structure of an ECU

The COM controls the communication, both within the ECU, and between ECUs. It provides the
application with services for sending and receiving messages. The API is uniform for services
exchanging messages within a node and between nodes.

The COM component can be implemented with compatibility, which is reflected by its
Communication Conformance Class (CCC). With this product, the CCC0 and CCC1
conformance classes are supported. CCC0 is the least resource demanding class and may be
implemented without any OS support. CCC1 requires the OS. The CCCs are provided in order to
allow the communication component capabilities to be adapted to the communication need of the
application.

In order to gain access to the communication HW, the COM makes use of the device drivers
provided by the COM-driver interface. This interface is not specified by the OSEK standard, and
is thus be specific to each particular implementation. The CAN device is used in this product.

1.4 Features of This Product

 The features of this product are shown below:

• The COM supports portability of application by providing a standardised application
program interface that is defined according to the ANSI C standard.

• An OSEK COM implementation provides the following features for message exchange in
applications.

- Task – Task communication

ECU

Communication HW

APPLICATION

Other Peripheral HW

Communication HW Drivers HW Drivers

Other Peripheral HW

HW Drivers

OS-COM IF

OS-NM IF
OSEK

OS

OS API

OSEK COM

OSEK
NM

NM API COM API

 NM-COM IF

 COM-Driver IF

Network

HW

SW

10

- ECU – ECU communication
- Different transmission concepts: Direct/Periodical/Mixed
- Communication deadline monitoring
- Notification by event setting and task activation

Note: Periodical transmission and mixed transmission is provided by an original interface. Please
refer to section 3.2.4 for details.

11

2 OPERATING ENVIRONMENTS

2.1 Conformity Version

The COM conforms to version 2.0a of the OSEK/VDX Communication specification and
version 2.1 revision 1 of the OSEK/VDX Message transmission modes and deadline monitoring.

2.2 Conformance Class

The function corresponding to the conformance class of OSEK Communication specification is
shown by ✔.

Table 2.1 Conformance Classes

Functions and Services Conformance
Classes

CCC0 CCC1
Transmission Direct ✔ ✔
concept Periodical ✔

Mixed ✔
Communication deadline monitoring ✔
Messages Unqueued ✔ ✔
Protocols UUDT (undivided

message)
✔ ✔

Services SendMessage ✔ ✔
ReceiveMessage ✔ ✔
GetMessageStatus ✔ ✔

Notification Task activation ✔
Event setting ✔

CCC0
Provides the minimum services and functions to ECU-internal and inter-ECU communication.
The OS is not indispensable.

CCC1
Provides periodical transmission, mixed transmission, deadline monitoring, and notification
mechanism. The OS is indispensable.

2.3 Communication Bus

The COM is implemented for a communication bus of CAN (hereafter referred to as a bus). The
COM uses HCAN as communication HW. The COM does not operate on other
communication HW and buses.

12

2.4 Operating System

The COM can be used with the OS of Hitachi Vehicle Operating System. The COM cannot be
used by combining with other OSs.

2.5 Notes

(1) The COM includes drivers for the HCAN devices that are built in the CPU. The drivers are
not parts of the OSEK COM standard, but do not remove them because they are required for
the COM operation.

(2) Refer to the help file of the COM configurator for details on COM configuration.
(3) Cannot be used in little endian. The COM must be used in big endian.

13

3 FUNCTIONS

3.1 Function Overview

The overview of the COM function is shown in Figure 3.1.

Figure 3.1 COM Function Overview

3.2 Messages

3.2.1 Message Types

There are three types of messages as follows:

• Local messages
• To Net messages
• From Net messages

ECU

Task

Network

Task

To Net Message (Transmission)

Direct, Condition, Periodical
Deadline Monitoring

Transmission Completion

COM

From Net Message (Reception)

Notification (ActivateTask,
SetEvent)
Deadline Monitoring

Notification (ActivateTask,
 SetEvent)

Notification (ActivateTask,SetEvent)

Local Message (Transmission and Reception)

14

3.2.1.1 Local

The Local messages are sent and received within a single ECU, without being transmitted over
the network. They are used to exchange information between different parts of a single
application.

3.2.1.2 To Net

The To Net messages are transmitted from the ECU to the network. They are received from the
network by other ECUs. These messages may be received locally by the sending the ECU.

3.2.1.3 From Net

The From Net messages are received in the ECU from the network. They are transmitted from
another ECU.

3.2.2 Message Operations

The following message operations are possible:

• Sending a message
• Receiving a message
• Reading the status of a message

3.2.2.1 Send

A message is transmitted via the SendMessage communication service. The transmission
operation differs depending on the message types.

Local
For Local messages, transmission means copying message data from the application to a data
area within the COM.

To Net
For To Net messages, message data is copied from the application, as for Local messages. In
addition, the message data is sent to the network.
The above description is relevant for a message that is transmitted in Direct mode. Please see
section 3.2.4 for details on other transmission modes.

3.2.2.2 Receive

Local
This service copies the message data from a data stored within COM message data area to the
application.

From Net
When receiving a message from a bus, the message data domain in COM is immediately updated
at the time. Message data is copied to application from the message data in COM at the time of
ReceiveMessage communication service call. Reception from a bus is asynchronously
processed with ReceiveMessage communication service call.

15

3.2.2.3 Get Status

The status of a message is obtained via the communication service GetMessageStatus. The
operation is applicable to messages of all types. The status expresses the following conditions of
the message:

• In use status: Locked (in use) or unlocked (not used)
• Data value status: Updated at least once or never updated

In Use
The status is locked if COM is using the message. The application cannot access the message
when the status is locked. If the application calls a communication service, no action that alters
the message will be performed and an error code indicating Locked will be returned. When the
message can be used, the status is unlocked.

Data Value
At COM start-up, the status of all messages is Never Updated. As soon as a message has been
sent from the application or received from the network, the status is changed into Updated at
Least Once. Henceforth, it does not become Never Updated.

3.2.3 Notification to Application

This function can use only CCC1. Operations on messages are performed asynchronous to the
application. A transmission to the network is requested by the application, but the transmission
operation is not finished before the communication service returns to the application. In CCC1,
the notification mechanism makes it possible for the COM to inform the application when the
transmission has been completed. A reception from the network is performed entirely without
intervention of the application. The COM receives a new message from the communication bus
and stores it internally. These operations are:

Table 3.1 Notification Timing

Operation Timing Applies to Message of Type

When issuing
SendMessage

LocalTransmission of
message

When transmission of
the message to a bus
is completed

To Net

Reception of message When the reception
of a message from
bus is completed

From Net

There are two kinds of notification methods.

• COM sets an event when the operation is finished
• COM activates a task when the operation is finished

16

3.2.4 Transmission Modes

The COM offers the following transmission modes:

• Direct
• Periodical (only CCC1)
• Mixed (only CCC1)

Table 3.2 Message Transmission Modes

Direct Message transmission is requested by each call by issuing SendMessage.

Periodical
(only CCC1)

Message transmission is requested by a dedicated task activated by a cyclic alarm.

Mixed
(only CCC1)

Message transmission is requested by a dedicated task activated by a cyclic alarm.
In addition, message transmission is conditionally. The condition is user-defined.

3.2.4.1 Direct

A transmitted message is unconditionally transmitted by issuing SendMessage. Direct
transmission is available for messages of types Local and To Net.

3.2.4.2 Periodical

When CCC1 is used, periodic transmission using alarm can be performed by combining with
OS. A transmission message is transmitted periodically. In this mode, the communication service
SendMessage does not initiate the transmission to the net. It only updates the message data.

The transmission to net is initiated by a periodically activated task. The task and the alarm must
be defined by the user.

The periodic task initiates transmission through a special Send service that is not a formal part of
the COM API. This service is named OC_SendMsgToNetPer. The user must add a call to this
service in the periodic task. See chapter 6 for details.

Do not start periodical transmission until COM initialisation is complete. This means that the
earliest point in time to start the alarm is from the MessageInit() function.

Periodical transmission is available for messages of type To Net.

17

Figure 3.2 Periodical Transmission

The Task A runs independently from the periodic task B. The latter requests a transmission to the
network, each time it is activated. The message named Foo is configured for periodical
transmission mode.

Task A

OC_SendMsgToNetPer(Foo)

Application

COM

SendMessage(Foo)

Periodic
Task B

Net Tx
requestPeriodic message registration

18

3.2.4.3 Mixed

When CCC1 is used, mixed transmission using alarm can be performed by combining with OS.
A transmission message is transmitted periodically. In addition, SendMessage conditionally
initiates a transmission to the network. A condition is evaluated each time SendMessage is
called. If the condition evaluates to “Send”, a transmission is initiated; otherwise not.

In this mode, the communication service SendMessage

1. Updates the message data
2. Calls the evaluation original function OC_MixedTxEval()
3. Requests a transmission to network if the evaluation function returned “Send”.

The evaluation performed in OC_MixedTxEval() is defined by application. The function must
return a value that tells COM whether to send the message or not. See section 6 for details.

Transmissions to net are initiated by a periodically activated task. The task and the alarm must be
defined by the user.

The periodic task initiates transmission through a special Send service that is not a formal part of
the COM API. This service is named OC_SendMsgToNetPer. The user must add a call to this
service in the periodic task.

Do not start periodical transmission until COM initialisation is complete. This means that the
earliest point in time to start the alarm is from the MessageInit() function.

Mixed transmission is available for messages of type To Net.

19

Figure 3.3 Mixed Transmission

Task A

OC_SendMsgToNetPer(Foo)

Application

COM

SendMessage(Foo)

Periodic
task B

Net Tx
request

Perio-
dical?

Yes

OC_MixedTxEval(Foo)

User processing

Return value
(Transmission
request flag)

No

Net Tx
request

No Tx

Mix-
ed?

Send
?

No

No

Yes

Yes

Register
periodic

20

Task A runs independently from the periodic task B. Task A calls SendMessage that
conditionally requests a transmission to the network. Task B requests a transmission to the
network, each time it is activated. The message named Foo is configured for mixed transmission
mode.

3.2.5 Deadline Monitoring

When CCC1 is used, the deadline monitoring using alarm can be performed by combining with
OS. Deadline monitoring means that a deadline is monitored. It can be applied regardless of
whether the message is configured for transmission or reception. For transmission, this means
that an initiated transmission to the net must be completed within a certain time frame. If not, an
alarm expires and as a consequence, a task is activated or an event is set. For reception, a
message must be received within a certain time frame. The start of this time frame is the point in
time when the previous message was received. If the deadline is broken, an alarm expires and as
a consequence, a task is activated or an event is set.

User must define the alarm, the task, and the event.

Deadline monitoring is applicable to messages of type To Net or From Net.

(1) Transmission

An alarm is started just before COM issues a transmission request to the network. Depending on
the transmission mode, this is done in either of
• SendMessage
• OC_SendMsgToNetPer

The alarm is cancelled automatically when COM receives a transmission confirmation from the
network.
If a confirmation does not occur within the alarm time, the alarm will expire.

Deadline monitoring may be used in both direct, periodical and mixed transmission modes.

(2) Reception

Start of the deadline monitoring of reception is possible by starting the alarm from a task or by
receiving the message that had once specified deadline monitoring.
In reception monitoring, the alarm is never cancelled; only restarted automatically.

Do not start reception monitoring until COM initialisation is complete. This means that the
earliest point in time to start the alarm is from the MessageInit() function.

The alarm is restarted each time COM receives a reception indication from the network.
If an indication does not occur within the alarm time, the alarm will expire.

21

3.2.6 Message Attributes

The following attributes must be configured for each message. All configurations are done with
the COM Configurator. Please see the COM Configurator Help File for details.

• Message Name (The character string which starts with an alphabetic character or an
underline, followed by zero or more alphabetic characters, underlines, or numbers. A
maximum of 32 characters.)

• Data Length (A maximum of 8 bytes)
• Message Type

− Local
− To Net
− From Net

• Notification Function
− None
− Event Mask (Event setting)
− Task ID (Task ID for task activation or event setting)

• Transmission Mode
− Direct
− Periodic (only CCC1)
− Mixed (only CCC1)

• Deadline Monitoring
− Alarm ID
− Expiration Time

• HCAN
− Mailbox Number (0 to 15)
− Bit Length of CAN ID (11 or 29 bits)
− CAN ID

Please note the following.
(1) Do not set up multiple messages of the same name.
(2) Do not set up multiple same CAN IDs.

22

3.3 Networks

3.3.1 HCAN Related Parameters

Each net message has the following settings related to the HCAN:

• Mailbox
• CAN ID

(1) Mailbox

Data exchange between a message and the CAN net is done through a mailbox. This is a data
area within the HCAN device that holds message data and control information. Each net message
must use a mailbox.
The following mailboxes exist in an HCAN device

• Mailbox for either transmission or reception (mailboxes 1-15)
• Mailbox only for reception (mailbox 0)

Mailboxes 1-15
These mailboxes can be used for To Net , or From Net. Multiple messages must not be assigned
to the same mailbox.

Mailbox 0
Only messages of type From Net may use this mailbox. It is intended to receive a group of
messages. During reception processing, reception of two or more messages in the mailbox 0
causes as an error, and is not processed.

(2) CAN ID

Each message has a unique identifier (CAN ID) that is used to identify the message on the CAN
bus. The CAN ID may consist of either 11 or 29 bits. 11 bits mean that 11 standard ID bits are
used in the CAN bus frame. 29 bits mean that 18 extended and 11 standard ID bits are used.

3.3.2 Channel

COM can treat two separate HCAN buses by one ECU. HCAN has the following parameters. All
configurations are done with the COM Configurator. Please see the Hardware Manual and the
COM Configurator Help File for details.

• Mailbox 0
− Bit length of CAN ID (11 or 29 bits)
− CAN ID
− LAFM (local acceptance filter mask for mailbox 0)

• Operation
− Transmission priority (mailbox order or ID order)
− Bit sample point (1 point or 3 points)

• Bit configuration
− Baud-rate prescaler (BRP)
− Time segment 1 (TSEG1)
− Time segment 2 (TESG2)

23

− Maximum bit synchronisation width (SJW)
• Interrupts

− For each HCAN interrupt source: Enabled/disabled

Restriction of a setting of a bit configuration is shown below.
 TSEG1 > TSEG2 >= SJW (SJW = 1 to 4)
 3 + TSEG1 + TSEG 2= 8 to25 Time Quanta
 TSEG2 > B'001 (BRP = B'000000)
 TSEG2 > B'000 (BRP > B'000000)

Refer to the Hardware Manual for details.

24

3.4 COM Architecture

The COM is divided into two main parts that are termed packages.

• Message Package
• Net Package

The Message Package provides the COM API. The Net Package transmits and receives the
HCAN network. To Net and From Net Messages require both packages.

Figure 3.4 COM Architecture

Message Package

Application

Net Package

Bus HW

COM

25

3.5 COM Control

The processing procedure of COM is shown below.

Figure 3.5 COM Processing Procedure

StartCOM
calling

Interrupt
initialisation

StartOS calling
(OS in use)

Message transmission

Hardware
initialisation

Reset

Message reception

ECU internal
 and external

Application
(Task)

ECU internal
 and external

Initialisation processing

26

3.5.1 Start Up

The start-up method of COM is

1. HW Reset
2. HW initialisation with interrupts disabled
3. Call StartCOM communication service
4. Interrupt initialisation
5. Call StartOS system service, if OS is used

The application must provide the code for steps 2 and 4. This product provides those codes as
sample (see section 4.2).
During start up, no messages may be transmitted or received.

3.5.2 Normal Operation

COM runs in normal mode as soon as start up is finished. Message transmission and reception
can be performed in this state. The flow of transmission and reception is shown below.

3.5.2.1 Message Transmission

1. Application calls SendMessage.
2. SendMessage copies message data from application to data area in COM.
3. For a net message, SendMessage starts net transmission.
4. SendMessage returns.
5. The message is sent from the HCAN to the CAN bus.
6. When transmission is finished, a Slot Empty interrupt occurs.
7. The ISR performs a call to the message package and net package of COM. This transmission

confirmation makes COM aware that the transmission operation is finished.
8. The ISR returns.

3.5.2.2 Message Reception in Application

1. Application calls ReceiveMessage.
2. ReceiveMessage copies message data from data area in COM to application.
3. ReceiveMessage returns.

3.5.2.3 Message Reception from Network

1. When message is received from the bus, a received-message interrupt occurs.
2. The ISR performs a call to the message package and net package of COM.
3. The COM copies message data from the HCAN to the data area in COM.
4. The ISR returns.

3.5.3 Shut Down

The COM cannot be shut down. When initialising COM, issue the StartCOM communication
service again.

27

3.5.4 Error Handling

The following error mechanisms are provided:

• Error codes returned from communication service
• Error interrupts related to the HCAN device
• Exceptions

3.5.4.1 Error Codes

The COM can operate in one of the following two error modes.

• Standard Status Mode
• Extended Status Mode

The COM with extended status is used in the development and debugging of applications; the
COM with standard status is used in fully debugged systems. Section 7.1 gives a summary of the
error codes returned by COMMUNICATION services.

28

3.5.4.2 Error Interrupt

The HCAN module may generate interrupts as described below:

Table 3.3 Interrupts from the HCAN Module

Interrupt Cause Default Setting Configurator Setting

Received message Available (reserved for COM) Impossible

Unread mail Available (reserved for COM, user
code can be added)

Impossible

Transmission mailbox empty Available (reserved for COM) Impossible

Reset Available (can be changed by the
user)

Impossible

Overload frame Unavailable Possible

Bus-off Unavailable Possible

Error passive Unavailable Possible

Bus receive overload warning Unavailable Possible

Bus transmit overload warning Unavailable Possible

Remote frame request Unavailable Possible

Bus operation request Unavailable Possible

All interrupts that are not reserved by COM may be used by the application. The COM provides
default handlers for all these interrupts. If required, it is possible to add codes. Refer to
section 5.3 for details.

3.5.4.3 Exception

COM does not include any exception handling features.
If OS is not used, exceptions must be handled by the application.
If OS is used, exceptions will be handled by the OS. Please refer to the Operating System
Manual for details.

29

4 SYSTEM CONFIGURATION

4.1 COM Application Building

Figure 4.1 shows the building process of a COM application.

Figure 4.1 Building Process of a COM Application.

OS Configuration
Files, Libraries

COM
Configurator

COM Configuration
Files, Libraries

COM Configuration
Files, Libraries

Application
Program Files

Compiler
Assembler

Linkage editor

OS
Configurator

User code addition
(See section 5.4)

OS Configuration
Definition Files

User input

Load Module

:file

:tool

COM Configuration
Definition Files

30

The configurator generates the configuration files and the library files determined by the user
input or configuration definition file. Along with the application program files, these files are
compiled, assembled and linked to generate the load module.

Refer to help files of OS and COM Configurator for information on how to generate
configuration files. Please refer to the Operating System Manual on the details of OS
configuration file.

4.2 COM Configuration Files

Configuration files are divided into the following file groups:

• App
Sample application files.

• Com
COM libraries, COM objects, COM configuration files and sample files generated by the
COM Configurator.

• Os
Sample OS configuration files generated by the OS Configurator.

The Com group may be further subdivided into:

• Evb
Sample files related to the target HW set-up.

• Hcan
HCAN driver files.

• Mcs
Sample CPU initialisation and section initialisation files.

• Msg
Message package files.

• Net
Net package files.

31

If required, rewrite the following files. Note that they are overwritten whenever these files
generate a COM configuration file by COM Configurator.

4.2.1 Evb

Table 4.1 Evb Group

File Description

int_hndl.c Interrupt handler

ma_cpu.c Hardware initialisation processing

ma_cpu.h Hardware initialisation header

ma_int.c Interrupt initialisation

ma_int.h Interrupt initialisation header

ma_io.c Port setting

ma_io.h Port setting header

ma_pfc.c Pin function controller (PFC) setting

ma_pfc.h Pin function controller (PFC) setting header

makeapp.h Macro

4.2.2 Hcan

Table 4.2 Hcan Group

File Description

ma_hcan1.c HCAN channel 0 processing

ma_hcan1.h HCAN channel 0 header

ma_hcan2.c HCAN channel 1 processing

ma_hcan2.h HCAN channel 1 header

mac.h HCAN macro

macan1.h HCAN channel 0 macro

macan2.h HCAN channel 1 macro

32

4.2.3 Mcs

Table 4.3 Mcs Group

File Description

dbsct.src Section initialisation definition

hwsetup.src Hardware initialisation

initsct.c Section initialisation

intprg.src Common interrupt program

resetprg.src Reset processing

stacksct.src Reset stack definition

vect.inc Vector table include file

vecttbl.src Vector table definition

4.2.4 Msg

Table 4.4 Msg Group

File Description

occallb.c Call function for message initialisation and mixed transmission

ocos.h COM interrupt level setting

33

5 PROGRAMMING

The programming method of COM application is shown below.

5.1 COM Initialisation

For COM initialisation, call services and functions according to the procedure shown below.
COM interrupt level must be maintained until COM initialisation is completed. If not using OS,
StartOS system service call is not required.

/*--- HW Init ---*/
MA_Init_PFC(); /* Pin function controller (PFC) initialisation */
MA_Init_CPU(); /* Hardware initialisation */
MA_Init_IO(); /* Port initialisation */

/*--- COM Init ---*/
StartCOM(); /* COM initialisation */
MA_Init_INT(); /* Interrupt initialisation */

/*--- OS Init ---*/
StartOS(application mode); /* OS initialisation */

5.2 Include Files

The program which uses a message must include the ocmsg.h file.

34

5.3 Interrupts

5.3.1 HCAN Interrupts

There are four vectors in each HCAN as follows, and each interrupt is divided into groups. Each
ISR must be defined in a vector table. In CCC0 with OS, register as category 1 interrupt. In
CCC1, register as category 2 interrupt. In CCC1, add “_ISR” at the end of ISR name because
HCAN interrupt handler is called via interrupt preamble of OS. HCAN ISR name is shown in
Table 5.1.

• ERS vector
- Error passive interrupt
- Bus off interrupt

• OVR vector
- Reset interrupt
- Remote frame request interrupt
- Bus transmit overload warning interrupt
- Bus receive overload warning interrupt
- Overload frame interrupt
- Unread mail interrupt
- Bus operation request interrupt

• RM vector
- Received message interrupt

• SLE vector
- Transmission mailbox empty interrupt

Table 5.1 HCAN ISR Name

vector CCC0 CCC1
ERS MA_IntHandler_ERS_HCANx MA_IntHandler_ERS_HCANx_ISR
OVR MA_IntHandler_OVR_HCANx MA_IntHandler_OVR_HCANx_ISR
RM MA_IntHandler_RM_HCANx MA_IntHandler_RM_HCANx_ISR
SLE MA_IntHandler_SLE_HCANx MA_IntHandler_SLE_HCANx_ISR
Note: x is 1 (for HCAN channel 0) or 2 (for HCAN channel 1).

5.3.2 Interrupt Priority Levels

• COM Interrupt Level

The highest interrupt priority level in the program which uses communication service must be set
as a COM interrupt level. When the OS is used by CCC0, the COM interrupt level must be set
higher than the OS interrupt level. In CCC1, the OS interrupt level is set to the COM interrupt

35

level. Communication service must not be issued from a program higher than the COM interrupt
level. Refer to ocos.h for the setting method of COM interrupt level.

• HCAN Interrupt Level

Both channels 0 and 1 of the HCAN module should be set to the same interrupt priority level.
The HCAN interrupt level should be set to the same COM interrupt level. Refer to ma_int.c
provided as a sample for the setting method.

5.4 User Code

The COM configuration file is generated by the COM Configurator. However, the user can add
some user codes to the following processing:

• Initialisation processing
• Call-back functions
• HCAN interrupts that are not reserved by COM

5.4.1 Initialisation processing

MA_Init_PFC()
This function exists in ma_pfc.c. This function is called from main.c provided as a sample.

MA_Init_CPU()
This function exists in ma_cpu.c. This function is called from main.c provided as a sample.

MA_Init_IO()
This function exists in ma_io.c. This function is called from main.c provided as a sample.

MA_Init_INT()
This function exists in ma_int.c. This function is called from main.c provided as a sample.

5.4.2 Call-Back Functions

MessageInit()
This function exists in occallb.c. This function is called from the StartCOM service. Refer to
section 6.1.2 for details.

OC_MixedTxEval()
This function exists in occallb.c. This function is called from within COM when a message is
transmitted in the mixed transmission mode. Refer to section 6.2.2 for details.

36

5.4.3 HCAN ISR

The user can add codes that handle interrupts from the HCAN. For details on interrupt causes,
refer to the Hardware Manual.

Table 5.2 User Code Placement for HCAN Interrupts.

Interrupt Cause Add User Code In

Unread mail int_hndl.c:
MY_UnReadMailHandler1() (for HCAN channel 0)
MY_UnReadMailHandler2() (for HCAN channel 1)

Reset int_hndl.c:
MY_PowerUpHandler1() (for HCAN channel 0)
MY_PowerUpHandler2() (for HCAN channel 1)

Overload frame macan1.h:

MA_OVERLOAD_FRAME_USERCODE1 macro (for HCAN channel 0)

macan2.h:

MA_OVERLOAD_FRAME_USERCODE2 macro (for HCAN channel 1)

Bus-off macan1.h:

MA_BUS_OFF_USERCODE1 macro (for HCAN channel 0)

macan2.h:

MA_BUS_OFF_USERCODE2 macro (for HCAN channel 1)

Error passive macan1.h:

MA_ERROR_PASSIVE_USERCODE1 macro (for HCAN channel 0)

macan2.h:

MA_ERROR_PASSIVE_USERCODE2 macro (for HCAN channel 1)

Bus receive overload warning macan1.h:

MA_REC_WARNING_USERCODE1 macro (for HCAN channel 0)

macan2.h:

MA_REC_WARNING_USERCODE2 macro (for HCAN channel 1)

Bus transmit overload warning macan1.h:

MA_TEC_WARNING_USERCODE1 macro (for HCAN channel 0)

macan2.h:

MA_TEC_WARNING_USERCODE2 macro (for HCAN channel 1)

Bus operation request macan1.h:

MA_WU_BUS_ACTIF_USERCODE1 macro (for HCAN channel 0)

macan2.h:

MA_WU_BUS_ACTIF_USERCODE2 macro (for HCAN channel 1)

37

5.5 Interface to OS

5.5.1 Interrupt

According to the following category rule, interrupt which uses COM (communication service)
must be registered into OS Configurator.

Table 5.3 Category Rule

Interrupt CCC0 CCC1
HCAN interrupt Category 1 Category 2
Other interrupts Category 1 or 2 Category 1 or 2

5.5.2 Alarm and Task

Cyclic alarm and task for a periodic and the mixed transmission modes must be prepared by user
application. The task needs to be registered into OS Configurator.

5.6 Registers

The values of general registers R0-R7, FR0-FR11, FPUL, and FPSCR1 cannot be guaranteed in
the communication service. If you use these registers after a communication service call, they
must be saved beforehand.

5.7 Stack

The COM never changes the stack. Therefore, add stack size of each service to the stack of the
program which calls communication service. Moreover, add the interrupt stack size of each
interrupt to the interrupt stack. Refer to section 7.6 for details on stack size.

1 The FR0-FR11, FPUL, and FPSCR registers are only valid for the processor with Floating Point Unit (FPU).

38

5.8 Calling a Communication Service From an Assembler Routine

Communication services may be called from assembler routines. In this case, the application
programmer must branch to the start address of each communication service by the JSR
command. Follow the rules governing parameter area allocation. For the type of a parameter,
refer to Table 7.4 Data Types, and C-language header file of Msg group of configuration files.

Table 5.4 Argument Convention

Register Argument number
R4 First argument
R5 Second argument
R6 Third argument
R7 Fourth argument

General register R0 is used for the return value.

The values of general registers R0-R7, PR, FR0-FR11, FPUL, and FPSCR cannot be guaranteed
before and after calling the communication service. If you use these registers, they must be saved
before the call, and restored after the call.

5.9 Notes on Assembler Use

When the COM is initialised from an assembler routine, call each initialisation processing of a
MA_Init_PFC() function, etc. by JSR. Although assembly language can describe Evb and Mcs
groups of a configuration file, be sure to describe Hcan, Msg, and Net groups in the C language.

39

6 API DESCRIPTION

The interface of the communication service is described below. Refer to section 5.8 on an
assembler interface.

6.1 Standard Interface

6.1.1 StartCOM

Syntax: StatusType StartCOM(void)

Parameter (In):
None
Parameter (Out):
None

Description:

COM is initialised. In the end, this service calls call-back function MessageInit().

Error Status:

Standard
No error: E_OK

Extended (Code added as extended status)
None

40

6.1.2 MessageInit

Syntax: StatusType MessageInit(void)

Parameter (In):
None
Parameter (Out):
None

Description:

COM calls this function automatically by StartCOM service. This function is provided by the
occallb.c file. Rewrite if needed.

Error Status:

Standard
No error: E_OK
Initialise failed: E_COM_SYS_MSG_INIT_FAILED

Extended (Code added as extended status)
None

41

6.1.3 SendMessage

Syntax: StatusType SendMessage(OC_SymbolicNameT <Msg>, OC_DataRefT <Data>)

Parameter (In):
Msg Message name
Data The address of the area where transmitting data was stored
Parameter (Out):
None

Description:

The transmit data is copied from the data area specified by application to the message data area
in COM. In the case of a network message, transmission is started for a network. In this case,
this service returns before the completion of transmission. When the periodic message which can
be used by periodic transmission or mixed transmission is transmitted, transmission to a network
is not started. Transmission to a network is performed by calling OC_SendMsgToNetPer service
from periodic task. Moreover, in mixed transmission, it is possible to start transmission to a
network by conditioning.

Error Status:

Standard
No error: E_OK
Message is locked: E_COM_LOCKED
An event could not be set as notification: E_COM_SYS_EVENT_SETTING_DENIED
A task could not be started as notification: E_COM_SYS_TASK_ACTIVATION_DENIED
An alarm for deadline monitoring could E_COM_SYS_ALARM_START_DENIED
not be started:
Transmission was denied by the net E_COM_SYS_NET_TX_DENIED
package:

Extended (Code added as extended status)
Invalid message: E_COM_ID

42

6.1.4 ReceiveMessage

Syntax: StatusType ReceiveMessage(OC_SymbolicNameT <Msg>,
OC_DataRefT <Data>)

Parameter (In):
Msg Message name
Data The area and address for received data
Parameter (Out):
Data Received data

Description:

Received data is copied from the message data area in COM to the data area specified by the
application. This service does not wait for reception of message data. Message data received last
which exists in COM is only copied.

Error Status:

Standard
No error: E_OK
After initialising message data, it has not updated: E_COM_NOMSG

Extended (Code added as extended status)
Invalid message: E_COM_ID

6.1.5 GetMessageStatus

Syntax: StatusType GetMessageStatus(OC_SymbolicNameT <Msg>)

Parameter (In):
Msg Message name
Parameter (Out):
None

Description:

Returns the status of the message.

Error Status:

Standard
No error: E_OK
Message is locked: E_COM_LOCKED
After initialising message data, it has not updated: E_COM_NOMSG

Extended (Code added as extended status)
Invalid message: E_COM_ID

43

6.2 Original Interface Functions

In addition to the communication services defined by the OSEK COM specification, the original
interface is provided.

6.2.1 OC_SendMsgToNetPer

Syntax:

enum OC_ILOpResultE OC_SendMsgToNetPer(OC_SymbolicNameT <Msg>)

Parameter (In):
Msg Message name
Parameter (Out):
None

Description:

Transmission to the network of a periodic message is started. Only the message for periodical or
mixed transmission can be used. This service must be called from task activated periodically.
The SendMessage service must be issued before transmitting to a network periodically by this
service. Message data transmitted by SendMessage communication service is transmitted
periodically. When not issuing SendMessage service, this service does not return an error but
transmits undefined data to a network.

Error Status:

Standard
No error: OC_ILOpResOK
Message is locked: OC_ILOpResMsgDsInUse
Alarm for deadline monitoring could not be OC_ILOpResError
started:
Transmission was denied by the net package: OC_ILOpResNetTxDenied

Extended (Code added as extended status)
Invalid message: OC_ILOpResError

44

6.2.2 OC_MixedTxEval

Syntax:

OC_CallbStatusT OC_MixedTxEval(OC_SymbolicNameT <pMsgH>)

Parameter (In):
pMsgH Message name
Parameter (Out):
None

Description:

The purpose is to evaluate a condition that tells COM whether to initiate or not a transmission to
network. Only the message for mixed transmission can be used. This function is automatically
called within COM at the time of the message transmission by SendMessage service. Since this
function is provided by the occallb.c file, the application programmer is responsible for adding
the code that evaluates the transmission condition. Since pMsgH is not an integer, a judgement
by the “switch” statement cannot be performed. It can judge by the "if" statement. The
evaluation must result in either of the following return values.

Error Status:

Standard
Initiate a transmission to net: OC_TxCondIsSendD
Do NOT initiate a transmission to net: OC_TxCondIsNoSendD

Extended (Code added as extended status)
None

45

7 APPENDIX

7.1 Communication Service Return Codes

Table 7.1 Communication Service Return Codes

Communication Service Standard Error Status Code Added in Extended Error
Status

StartCOM E_OK ---
MessageInit E_OK

E_COM_SYS_MSG_INIT_FAILED*

SendMessage E_OK
E_COM_LOCKED
E_COM_SYS_EVENT_SETTING_DENIED*
E_COM_SYS_TASK_ACTIVATION_DENIED*
E_COM_SYS_ALARM_START_DENIED*
E_COM_SYS_NET_TX_DENIED*

E_COM_ID

ReceiveMessage E_OK
E_COM_NOMSG

E_COM_ID

GetMessageStatus E_OK
E_COM_NOMSG
E_COM_LOCKED

E_COM_ID

OC_SendMsgToNetPer* OC_ILOpResOK *

OC_ILOpResMsgDsInUse *

OC_ILOpResError *
OC_ILOpResNetTxDenied *

OC_ILOpResError *

OC_MixedTxEval* OC_TxCondIsSendD *

OC_TxCondIsNoSendD *

Note: *: Original function

46

7.2 Return Code IDs

Table 7.2 Return Code IDs

Return Code Description ID
E_OK No error 0 (H’0)

E_COM_ID Invalid message 1 (H’1)

E_COM_LIMIT Reserved (not used) 2 (H’2)

E_COM_NOMSG After initialising message data, it has not
updated

3 (H’3)

E_COM_LOCKED Message is locked 4 (H’4)

E_COM_SYS_NET_TX_DENIED* Transmission was denied by the net
package

64 (H’40)

E_COM_SYS_EVENT_SETTING_DENIED* An event could not be set as notification 65 (H’41)

E_COM_SYS_TASK_ACTIVATION_DENIED* A task could not be started as notification 66 (H’42)

E_COM_SYS_ALARM_START_DENIED* An alarm for deadline monitoring could
not be started

67 (H’43)

E_COM_SYS_UNEXPECTED_STATE* Reserved (not used) 68 (H’44)

E_COM_SYS_MSG_INIT_FAILED* Initialise failed 69 (H’45)

OC_ILOpResOK* No error 256(H’100)

OC_ILOpResError* Invalid message

Alarm for deadline monitoring could not
be started

257 (H’101)

OC_ILOpResMsgDsInUse* Message is locked 258 (H’102)

OC_ILOpResNetTxDenied* Transmission was denied by the net
package

259 (H’103)

OC_ILOpResMsgUnexpectedState* Reserved (not used) 260 (H’104)

OC_ILOpResToNetMsgNotSupported* Reserved (not used) 261 (H’105)

OC_ILOpResFrNetMsgNotSupported* Reserved (not used) 262 (H’106)

OC_TxCondIsSendD* Initiate a transmission to net 1 (H’1)

OC_TxCondIsNoSendD* Do NOT initiate a transmission to net 2 (H’2)

Note: *: Original function

47

7.3 Communication Service Calls

In calling a program, “Yes” shows communication service which can be issued. "---" means that
operation is not guaranteed.

Table 7.3 Communication Service Calls

CCC1Communication
service

Before
COM
initial-
isation
(Indispens-
able)
CCC0/
CCC1

CCC0
Task ISR Error

hook
PreTask

hook
PostTas

k
hook

Startu
p

hook

Shutdown
hook

StartCOM Yes --- --- --- --- --- --- --- ---
SendMessage --- Yes Yes Yes --- --- --- --- ---
ReceiveMessage --- Yes Yes Yes Yes --- --- --- ---
GetMessageStatus --- Yes Yes Yes Yes --- --- --- ---
OC_SendMsgToNetPer* --- --- Yes --- --- --- --- --- ---

Note: *: Original function

7.4 Data Types

Table 7.4 Data Types

Name Type(size) Description
StatusType unsigned long (4 bytes) Return value
OC_SymbolicNameT struct OC_MsgHandleS * (4 bytes) Message name
OC_DataRefT void * (4 bytes) Address or pointer for message data
OC_ILOpResultE enum (4 bytes) Return value
OC_CallbStatusT unsigned char (1 byte) Return value

7.5 Maximum Parameters

Table 7.5 Maximum Parameters

Item Limit
Max number of Nets per COM * 2
Max number of Local messages 1000
Max number of To Net messages per Net * 15
Max number of From Net messages per Net * 31
Max number of messages for mailbox 0 * 16
Max number of messages for mailboxes 1-15 * 1
Max number of messages per Net * 31

Note: *: They are based on hardware specification.

48

7.6 Stack Requirements

Table 7.6 Stack Requirements

Service, ISR Stack Usage [Byte]

StartCOM 72 + stack used with MessageInit() function (default is 0)

Local message 32

Direct 104

Periodical 32

SendMessage

To Net message

Mixed 104 + stack used with OC_MixedTxEval() function (default is 0)

ReceiveMessage 0

GetMessageStatus 0

OC_SendMsgToNetPer To Net message Periodical 88

ISR of Receive Message Interrupt from HCAN 192

ISR of Transmit Mailbox Empty Interrupt from HCAN 176

49

Hitachi Vehicle Operating System for SH-2
Communication Manual

Publication date: 1st Edition, May 2001
Copyright (c) Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.

